31 research outputs found

    Increased bone mineral density in Aboriginal and Torres Strait Islander Australians: Impact of body composition differences

    Get PDF
    Bone mineral density (BMD) has been reported to be both higher and lower in Indigenous women from different populations. Body composition data have been reported for Indigenous Australians, but there are few published BMD data in this population. We assessed BMD in 161 Indigenous Australians, identified as Aboriginal (n = 70), Torres Strait Islander (n = 68) or both (n = 23). BMD measurements were made on Norland-XR46 (n = 107) and Hologic (n = 90) dual-energy X-ray absorptiometry (DXA) machines. Norland BMD and body composition measurements in these individuals, and also in 36 Caucasian Australians, were converted to equivalent Hologic BMD (BMDH) and body composition measurements for comparison

    Non-Fermi liquid regime of a doped Mott insulator

    Full text link
    We study the doping of a Mott insulator in the presence of quenched frustrating disorder in the magnetic exchange. A low doping regime δ<J/t\delta<J/t is found, in which the quasiparticle coherent scale is low : ϵF=J(δ/δ)2\epsilon_F^* = J (\delta/\delta^*)^2 with δ=J/t\delta^*=J/t (the ratio of typical exchange to hopping). In the ``quantum critical regime'' ϵF<T<J\epsilon_F^*<T<J, several physical quantities display Marginal Fermi Liquid behaviour : NMR relaxation time 1/T1const.1/T_1\sim const., resistivity ρdc(T)T\rho_{dc}(T) \propto T, optical lifetime \tau_{opt}^{-1}\propto \omega/\ln(\omega/\epstar) and response functions obey ω/T\omega/T scaling, e.g. Jqχ(q,ω)tanh(ω/2T)J\sum_q \chi''(q,\omega) \propto \tanh (\omega/2T). In contrast, single-electron properties display stronger deviations from Fermi liquid theory in this regime with a ω\sqrt{\omega} dependence of the inverse single-particle lifetime and a 1/ω1/\sqrt{\omega} decay of the photoemission intensity. On the basis of this model and of various experimental evidence, it is argued that the proximity of a quantum critical point separating a glassy Mott-Anderson insulator from a metallic ground-state is an important ingredient in the physics of the normal state of cuprate superconductors (particularly the Zn-doped materials). In this picture the corresponding quantum critical regime is a ``slushy'' state of spins and holes with slow spin and charge dynamics responsible for the anomalous properties of the normal state.Comment: 40 pages, RevTeX, including 13 figures in EPS. v2 : minor changes, some references adde

    Ginzburg-Landau functional for nearly antiferromagnetic perfect and disordered Kondo lattices

    Full text link
    Interplay between Kondo effect and trends to antiferromagnetic and spin glass ordering in perfect and disordered bipartite Kondo lattices is considered. Ginzburg-Landau equation is derived from the microscopic effective action written in three mode representation (Kondo screening, antiferromagnetic correlations and spin liquid correlations). The problem of local constraint is resolved by means of Popov-Fedotov representation for localized spin operators. It is shown that the Kondo screening enhances the trend to a spin liquid crossover and suppresses antiferromagnetic ordering in perfect Kondo lattices and spin glass ordering in doped Kondo lattices. The modified Doniach's diagram is constructed, and possibilities of going beyond the mean field approximation are discussed.Comment: 18 pages, RevTeX, 7 EPS figures include

    Non-Fermi Liquid Regimes and Superconductivity in the Low Temperature Phase Diagrams of Strongly Correlated d- and f-Electron Materials

    Full text link

    ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    Get PDF
    ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&amp;D required to meet those challenges

    MOLECULAR DYNAMICS SIMULATIONS OF NANOINDENTATION OF POSS MATERIALS

    No full text
    corecore